Neuromuscular Disorders: The Road from Detection to Diagnosis

35th BNI Neuroscience Nursing Symposium
10/19/16

Shafeeq S. Ladha, MD
Ira A. and Mary Lou Fulton Chair in Motor Neuron Disease
Director, Fulton ALS Center
Associate Professor of Neurology
Disclosures

- No relevant disclosures
Objectives

• Define neuromuscular diseases
• Describe the approach to diagnosing neuromuscular diseases
• Discuss common, relevant disorders
• Understand the importance of recognizing neuromuscular disease by all practitioners.
First things first...

- What are neuromuscular disorders?
 - Heterogeneous group of disorders affecting the peripheral nervous system
 - Muscle diseases
 - Nerve diseases
 - Neuromuscular junction diseases
 - Not synonymous with Movement Disorders
Limb-Girdle Muscular Dystrophy (LGMD) Syndromes

Limb girdle dystrophies: **Dominant**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Myotilin; 5q31; Dysarthria</td>
</tr>
<tr>
<td>1B</td>
<td>Lamin A/C; 1q21; + Cardiac</td>
</tr>
<tr>
<td>1C</td>
<td>Caveolin-3; 3p25; Child onset</td>
</tr>
<tr>
<td>1D</td>
<td>DNAJB6; 7q36</td>
</tr>
<tr>
<td>1E</td>
<td>Desmin; 2q35</td>
</tr>
<tr>
<td>1F</td>
<td>TNPO3; 7q32</td>
</tr>
<tr>
<td>1G</td>
<td>HNRNPD1; 4q21</td>
</tr>
<tr>
<td>1H</td>
<td>3p23</td>
</tr>
</tbody>
</table>

Ankle contractures & High CK

Bethelm, 1

- COL6A1: 21q22
- COL6A2: 21q22
- COL6A3: 2q37

Bethelm, 2: COL12A1; 6q13

Central core

RYR1: 19q13

Cytoplasmic body

- 2q24; 2q21 +...

Distal myopathies

- MPD2: MATR3; 5q31
- Emery-Dreifuss

Lamin A/C

- 1q21

SYNE1

- 6q25

SYNE2

- 14q23

Facioscapulohumeral

- 1A: DUX4; 4q35
- 1B: DUX4; 10qter
- 2: SMCHD1; 18p11

Myofibrillar (Desmin storage)

- MF1M: Desmin; 2q35; AD or AR
- MF1M: CRYAB; 11q22
- MF3M (LGMD 1A): Myotilin; 5q31
- MF3M: ZASP; 10q23
- MF5M: Filamin C; 7q32
- MF6M: BAG3; 10q25
- Congenital: SEPN1; 1p36
- Other

Myosin storage

- MYH7; 14q11

Myotonic (DM1)

- DMPK; 19q13

Myotonic (DM2)

- ZNF9; 3q21
- Oculopharyngeal: PABP2; 14q11

Limb girdle dystrophies: **Recessive**

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>Calpain-3; 15q15</td>
</tr>
<tr>
<td>2B</td>
<td>DF3; 2p13</td>
</tr>
<tr>
<td>2C</td>
<td>y-Sarcoglycan; 13q12</td>
</tr>
<tr>
<td>2D</td>
<td>a-Sarcoglycan; 17q21</td>
</tr>
<tr>
<td>2E</td>
<td>b-Sarcoglycan; 4q12</td>
</tr>
<tr>
<td>2F</td>
<td>f-Sarcoglycan; 5q33</td>
</tr>
<tr>
<td>2G</td>
<td>Telethonin; 17q12</td>
</tr>
<tr>
<td>2H</td>
<td>TRIM32; 5q33</td>
</tr>
<tr>
<td>2I</td>
<td>MDDGC5; FKRP; 19q13</td>
</tr>
<tr>
<td>2J</td>
<td>Titin; 2q24</td>
</tr>
<tr>
<td>2K</td>
<td>MDDGC1; POMT1; 9q34</td>
</tr>
<tr>
<td>2L</td>
<td>ANOS; 11p14</td>
</tr>
<tr>
<td>2M</td>
<td>MDDGC4; Fukutin; 9q31</td>
</tr>
<tr>
<td>2N</td>
<td>MDDGC2; POMT2; 14q24</td>
</tr>
<tr>
<td>2Q</td>
<td>MDDGC3; POMGnT1; 1p32</td>
</tr>
<tr>
<td>2P</td>
<td>MDDGC9; DAG1; 3p21</td>
</tr>
<tr>
<td>2Q</td>
<td>Plectin II; 8q24</td>
</tr>
<tr>
<td>2R</td>
<td>Desmin; 2q35</td>
</tr>
<tr>
<td>2S</td>
<td>TRAPPC11; 4q35</td>
</tr>
<tr>
<td>2T</td>
<td>GMPPB; 3p21</td>
</tr>
<tr>
<td>2U</td>
<td>Cerebellum small; ISPD; 7p21</td>
</tr>
<tr>
<td>2V</td>
<td>GAA; 17q25</td>
</tr>
<tr>
<td>2W</td>
<td>LIMS2; 2q14</td>
</tr>
<tr>
<td>2X</td>
<td>POPDC1; 6q21</td>
</tr>
<tr>
<td>2Y</td>
<td>TOR1AIP1; 1q25</td>
</tr>
<tr>
<td>2Z</td>
<td>MDDGC12; POMK; 8p11</td>
</tr>
</tbody>
</table>

Caveolin-3

- Merosin (Laminin a2)
 - Absent: 6q22
 - Reduced

Abnormal: LGMD 2I

- **Myosin 2**

Myosin 2

- **Cardiomyopathy**

Arrhythmia

- POPDC1; 6q21
- Dilated: DPM3; 1q12
- Triangle tongue (2W): LIMS2; 2q14
- CNS: POMGnT2; 3p22
- Contractures: TOR1AIP1; 1q25
- Epilepsy: DPM2; 9q34

Infant stiffness: CRYAB; 11q22

Other inherited myopathy syndromes

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3: Dystroglycan disorders (MDDC)</td>
<td></td>
</tr>
<tr>
<td>APECED: AIRE; 21q22; Recessive</td>
<td></td>
</tr>
<tr>
<td>Autoimmunity</td>
<td></td>
</tr>
<tr>
<td>Excessive: VMA21; Xq28</td>
<td></td>
</tr>
<tr>
<td>Multisystem: CLN3; 16p11; Recessive</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Barnes myopathy: Dominant</td>
<td></td>
</tr>
<tr>
<td>Cardiac + Myopathy</td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy-associated</td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy (?) LGMD1B</td>
<td></td>
</tr>
<tr>
<td>LGMD 1E: Desmin; 2q35; Dominant</td>
<td></td>
</tr>
</tbody>
</table>

LGMD: General features

Muscle proteins

- **Connective tissue**
- **Dystrophin & associated proteins**
- **Intermediate filaments**
- **Neuromuscular junction**
- **Nuclear envelope**
- **Structural & Contractile**

Inclusion Body (IBM)

- Distal + Respir: TTN; 2q31; Dominant
- IBM1: Desmin; 2q35; Dominant
- IBM2: GNE; 9p12; Recessive
- IBM3: MYH2; 17p13; Dominant
- IBM4: 7q22; Dominant
- LGMD 1D: DNAJB6; 7q36; Dominant
- IBM + Paed
- HMRF: Titin; 2q24; Dominant
- KFS4: MYO1B; 22q12; Recessive
- Lipid
- Mitochondrial
- Myotonic dystrophy
- Ophthalmoplegia: MYH2; 17p13; Recessive
- Other dystrophies
- Protein surplus: CASQ1; 1q23; Dominant
- Reducing body
- Respiratory failure
- Scapuloperoneal syndromes
- Skeletal + Myopathy: Dominant
- Bone fragility: MTAP; 9p21
- Paget (VCP; HNRNPA2B1; HNRNPC1)
- Dysphasia
- Diaphragm: TGFB1; 19q13
- Epiphysial: COL9A3; COL9A2; COMP
- Spheroid body (Myotilin)
- Strongman: DCST1; 1q22; Dominant
- Tubular aggregates
- Tubular arrays

http://neuromuscular.wustl.edu
Relevance

- Many diseases treatable
 - Myasthenia gravis
 - Guillain-Barre Syndrome
- Can be complications of other clinical scenarios
 - Chemotherapy
 - Critical illness
- Misdiagnoses lead to missed or excess treatment
 - ALS
General Symptoms

- Weakness
- Sensory disturbance
- Dysphagia
- Diplopia
- Dyspnea
- Dysarthria
- Muscle atrophy
- Falls
- Pain
Other History

- Disease course
- Detailed family history
- Diurnal variability
- Fasciculations
- Episodic symptoms
 - Cold
 - Exercise
 - Carbohydrates
- Autonomic symptoms
Approach

• Examination
 – Goals
 • Distinguish muscle, nerve and NMJ localization
 • Assess functional deficits
 • Identify uncommon and specific findings
 – Frequently diagnostic
Examination features

• Muscle
 – Proximal >> Distal Muscle weakness
 – Reflexes generally preserved
 – Normal sensory exam
 – No or minimal atrophy
Muscle patterns

- Limb-girdle
- Scapuloperoneal
- Distal predominant
- Distal arm/proximal leg
- Ptosis with/without EOM involvement
- Bulbar involvement
Examination Features

• Peripheral nerve disorders
 – Distal weakness +/- Proximal weakness
 – Absent or markedly reduced reflexes
 – Careful sensory exam
Examination

• Neuromuscular junction
 – Fatigable weakness
 – Widespread pattern
 • Ocular and bulbar
 – No sensory loss
 – Often only mildly reduced reflexes despite profound weakness
Workup

- EMG
 - Useful to confirm nerve vs. muscle
 - Can characterize the neuropathy
 - May be useful for prognosis
 - Can distinguish pre-ganglionic from post-ganglionic lesion
 * Requires 10-14 days for changes to develop*
Labs

- **Muscle**
 - CPK, thyroid, ANA, ESR

- **Peripheral neuropathy**
 - HbA1C, Thyroid, ANA profile, RF, B12, ESR, IFE

- **NMJ**
 - Acetylcholine receptor antibodies
Biopsy

• Generally used to confirm diagnosis

• Muscle
 – Confirms inflammatory myopathy
 • Polymyositis vs. dermatomyositis
 • Necrotizing myopathy
 – Can be used to determine type of muscular dystrophy

• Nerve
 – Vasculitis
 – Amyloidosis
 – Inflammatory demyelinating
32 year old male with weakness
- 2 days ago developed numbness/tingling in feet
- Yesterday with back pain
- This morning awoke unable to walk without falling
- Now hands are tingling
- Viral URI 2 weeks ago
Case

Exam

- Normal MS and CN
 - Areflexic
 - 4/5 deltoids and intrinsic hand muscles
 - 3/5 hip flexors and dorsiflexors
 - Panmodality stocking/glove sensory loss

- Workup
 - Lumbar puncture: 2 cells (L), gluc 45, prot. 110
 - MRI L-spine w/ contrast: Enhancing nerve roots
AIDP

- Acute Inflammatory Demyelinating Polyradiculoneuropathy
 - Guillain-Barre Syndrome
- Autoimmune attack on proximal peripheral nerve
 - Humorally mediated
 - Multiple antibodies implicated
Classic AIDP

• Clinical history
 – Lower extremity paresthesias
 • Initial symptom in 50%
 – Back pain
 – Ascending weakness

• Associated symptoms
 – Dyspnea
 – Dysphagia
 – Autonomic symptoms
AIDP

- Frequent prodrome
 - URI
 - Mycoplasma
 - CMV
 - Gastroenteritis
 - Campylobacter jejuni
 - Linked to motor variants
 - Surgery
 - Vaccination
 - Post-partum
 - Seroconversion HIV
AIDP

- Laboratory
 - CSF
 - “albumino-cytologic dissociation”
 - If cells present should suspect HIV
 - OCBs may be present
 - Campylobacter serologies
 - Anti-GQ1b antibodies
 - EMG can be normal
AIDP

• Course
 – Self-limited (even without treatment)
 – Faster recovery with treatment
 – Usual nadir in 1st 10 days
 – Progression <4 weeks
AIDP

• Management
 – ICU or ICA monitoring
 • Tele because of risk of arrhythmia
 – Follow pulmonary functions q4-6 hours
 • Intubation indicated
 – Nif <25 mm Hg
 – FVC < 12-15 ml/kg (~1000 ml)
 – Swallow evaluation/Nutrition
 – Bowel/Bladder care
 – PT for ROM
AIDP

• Treatment - Acute
 – IVIG 2g/kg over 2-5 days
 – Plasma exchange 50mg/kg, 5 treatments over 5-15 days
 – Steroids “Contraindicated”

• Treatment – Long-term
 – Physical and occupational therapy
 • Compensatory devices
Critical Illness Neuromyopathy

• Increasingly recognized complication of ICU
 – Critical illness myopathy (CIM) and Critical illness polyneuropathy (CIP)
 – Most commonly concurrent

• Risk factors
 – Sepsis/SIRS (CIP)
 – Corticosteroid and NM blocking agents (CIM)
 – Severity and duration of ICU admission
CINM

• Presentation
 – Failure to wean
 – Severe weakness (often quadriplegia)
 – Severe atrophy (esp. CIP)
 – Areflexic

• Differential diagnosis
 – CNS disorders
 – Myasthenia Gravis
 – Botulism
 – Guillain-Barre
CINM

• Diagnosis
 – Onset and pre-admission history critical
 – Exam and typical history usually adequate
 – Muscle biopsy
 • Loss of thick filaments (CIM)
 – EMG
 • May show prolonged motor responses (CIM)
 • Absent sensory responses (CIP)

CINM

• Management
 – Supportive care
 – Long-term rehab needed.

• Prognosis
 – Limited studies
 – Most with long-term neurological sequelae
 – Improvement CIM > CIP
Amyotrophic Lateral Sclerosis

- Fatal neurodegenerative disease of the motor neuron
 - Described by Charcot in 1869
 - Causes bulborespiratory failure
 - Riluzole only treatment
ALS Epidemiology

- Worldwide incidence of 1-8/100,000
- Slight male predominance
- 5%-10% familial
- Peak incidence 6th-8th decades
- Lifetime risk 1:2000

\(^1\text{Clin Genet 2003;63(2):83-101}\)
Pathophysiology

- Multifactorial
 - Glutamate toxicity
 - Inflammation
 - Genetic
 - Monogenetic
 - Polygenetic
 - Mitochondrial
 - Toxic misfolded proteins
 - Environmental exposures

Motor neuron death
Clinical features

• Progressive weakness
 – Often asymmetric
 – May begin in bulbar, respiratory or limb
 – Painless
 – Occasionally pseudo-acute presentation to hospital

• Fasciculations

• Eventual failure to thrive and death
ALS Diagnosis

• Neurological examination – Primary means of dx
 – UMN and LMN signs
 – Fasciculations
 – Asymmetry
 – Normal sensation

• Ancillary tests to exclude alternative diseases
 – MRI
 – Serologic tests
 – EMG
 – Lumbar puncture rarely needed
ALS Exam

- **Upper motor neuron exam**
 - Spastic dysarthria
 - Slow tongue movements
 - Hyperactive gag, blink, jaw, deep tendon reflexes
 - Increased tone in limbs
 - Babinski (relatively uncommon) and Hoffman signs
 - Pseudobulbar affect

- **Lower motor neuron exam**
 - Flaccid dysarthria
 - Atrophy
 - Hyporeflexia
 - Decreased tone
 - Fasciculations
Variants

- Primary lateral sclerosis (PLS)
 - Pure upper motor neuron
- Progressive muscular atrophy (PMA)
 - Pure lower motor neuron

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>No of cases (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic</td>
<td>404 (30.3)</td>
</tr>
<tr>
<td>Bulbar</td>
<td>456 (34.2)</td>
</tr>
<tr>
<td>Flail arm</td>
<td>74 (5.5)</td>
</tr>
<tr>
<td>Flail leg</td>
<td>173 (13.0)</td>
</tr>
<tr>
<td>Pyramidal</td>
<td>120 (9.1)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>14 (1.1)</td>
</tr>
<tr>
<td>PLMN</td>
<td>38 (2.9)</td>
</tr>
<tr>
<td>PUMN</td>
<td>53 (4.0)</td>
</tr>
<tr>
<td>Overall ALS</td>
<td>1332</td>
</tr>
</tbody>
</table>

JNNP, 2011. 82(7): p. 740-6
ALS management

- **Generally quality of life**¹
 - Cramps
 - Baclofen, Benzos
 - Saliva
 - TCA, Botox
 - Nutrition
 - PEG
 - Mobility
 - Power chair, hoyer

- Physical therapy
 - ROM, conditioning
- Psychosocial
 - Family, occupation
- Pulmonary
 - Non-invasive ventilation
 - Improves survival ²,³
 - Secretion management

¹ Neurology 73(15): 1218-1226
² J Neurol Sci 125 supp: 19-26
³ J Neurol Sci 164(1): 82-88
Challenge of Misdiagnosis

• “Risk factors”
 – Heterogeneous disease
 – Mimicked by much more common disorders
 • Radiculopathy
 • Entrapment neuropathy
 – Lack of provider experience
 – Lack of pain
Conclusion

- Neuromuscular diseases are a group of common and rare diseases of the peripheral nervous system.
- Careful clinical history and exam are the most important factor contributing to diagnosis.
 - Nerve, muscle and NMJ diseases have different exams.
 - Ancillary tests merely confirm clinical diagnosis.
- Treatment includes supportive care and immune directed treatments.
 - Treatment impacts prognosis and quality of life.
- Awareness by non-neuromuscular specialists critical.
Questions?

“I thought Google eliminated the need to ask questions out loud, but fine…”

Congratulations on 35 great years of the BNI Neuroscience Nursing Symposium!