• Find a Doctor
  • International Patients
  • Newsroom
  • Contact Us
  • Patients & Families
  • Education
  • Research
  • Departments & People
  • Donate to The Barrow

    Preclinical Imaging Resources

    Bruker Biospec 7-Tesla MRI

    One of two procedure rooms available for the preparation of imaging specimens

    This high-field magnetic resonance imaging (MRI) system has a 30-cm bore with a 200-mm gradient set (20 G/m) and a high-power 116-mm gradient insert (60 G/m). We have a multiple acquisition coils to suit a variety of applications (brain, body, etc.) along with 31P and 13C coils for multinuclear spectroscopy.

    The 7 Tesla (7T) MRI at the Center for Preclinical Imaging is equipped with a host of imaging capabilities to meet a variety of scanning needs:

    • High-resolution anatomy. The 7T MRI has numerous scans available for visualization and measurement of anatomy. High signal-to-noise and optimized protocols allow precise measurement of anatomical structures with a spatial resolution of less than 100 microns.
    • Functional MRI. Over the past decade, functional MRI (fMRI) has become the most popular method for mapping brain function. Our preclinical MRI is a platform for a range of investigations—from how pharmacologic compounds affect brain function to the quest to better understand the mechanisms underlying fMRI itself.
    • Perfusion. The measurement of the effects of perfusion and contrast agents is a valuable tool for examining neuropathologies such as brain tumors and stroke. Contrast agent bolus tracking, relaxivity measurements, and perfusion measurements are some of the methods available to researchers using the Center.
    • Diffusion. The 7T MRI has programmed routines for acquiring images weighted for local water diffusion. This feature can be used to characterize disease states such as hypoxic edema associated with vascular stroke. Diffusion tensor imaging uses restricted diffusion data to generate images of fiber tracts in the brain.
    • Angiography. The visualization of vascular anatomy is important for the study of vascular disease, stenosis, and blood-flow occlusion. High-resolution in vivo imaging of vessels is possible with the use of specialized imaging techniques, contrast agents, or both.
    • Cardiac Function. Cardiac disease is the number one cause of death in the United States. The 7T MRI at the Barrow-ASU Center for Preclinical Imaging offers cutting-edge methods for gathering images of the cardiac cycle for in vivo analysis of preclinical cardiac disease models.

    Xenogen IVIS Spectrum®

    The Spectrum system allows noninvasive longitudinal measurement of disease states, cell trafficking, and gene expression patterns. Both florescent and bioluminescent reporters can be imaged with this system as well as with 2- and 3-dimensional tomography.

    Procedure Rooms

    Two procedure rooms equipped with medical gasses, fume hoods, and basic laboratory equipment (e.g., scales, pipettes) are available for study preparation. Holding rooms are also available for a per diem fee (Contact Us).


    A data analysis workstation is available for end users to work with their data offline. A file-transfer protocol (FTP) server also is available to facilitate remote access to study data and data transfer to an off-site location.

    Application for Use of CPI Resources

    About Barrow

    Since our doors opened as a regional specialty center in 1962, we have grown into one of the premiere destinations in the world for neurology and neurosurgery. Our experienced, highly skilled, and comprehensive team of neurological specialists can provide you with a complete spectrum of care–from diagnosis through outpatient neurorehabilitation–under one roof. Barrow Neurological Institute: Discover. Educate. Heal.